PETplanet PETinar

Disruptive Technologies and Innovative Additives for PET Recycling

Dr. Carl-Jürgen Wefelmeier (Gneuss): Post Consumer Tray Recycling

Dr. Axel Hannemann (Gneuss): Use of Post Consumer PET in Bottle und Fibre Production

Alessandra Funcia (Sukano): Ensure Productivity and High Quality Processability of the Final RPET Application with Sukano Masterbatches

Company History

Development of Factory Site in Bad Oeynhausen

Dr. Axel Hannemann Disruptive Recycling Technologies

Foundation 1983 Auf den Köppen, Bad Oeynhausen

1st Expansion 1996 Enlargement of production, engineering and administration departments

3rd Expansion 2015 Adding a further floor to the office building, new hall construction and complete restoration, doubling the number of employees since 2010.

Move 1989 Mönichhusen, Bad Oeynhausen

2nd Expansion 2010 New hall construction for production & technical center

4th Expansion 2018 Second technical center for trials

Gneuss at a glance Who we are

Dr. Axel Hannemann Disruptive Recycling Technologies

- + Made in Germany
- + 200 employees worldwide
- Worldwide distribution with
 55 Sales & Service Locations
- + Subsidiary Gneuss Inc. USA
- + Gneuss centers in Brazil and China
- + 36 years of successful development

Extrusion Technology

Filtration Technology

Measurement Technology

Turnkey Solutions

Technical Center Lab lines for your trials

- + Product demonstrations
- + Sample production for evaluation
- + Trials for determining the optimum equipment specification
- + Trials for customer product development projects

Gneuss PET Recycling Lines Post Consumer Tray Recycling

Dr. Carl-Jürgen Wefelmeier PET Recycling Lines

Content

- + Bottle to Tray MRS Extrusion
- + Recycling Filtration RSF*genius*
- + Recycling Viscometer VIS
- + Tray to Tray MRS*jump* Extrusion

Bottle to Tray – Multi Rotation System / MRS Extruder Gneuss Processing Unit GPU

MRS Extruder

Standard Sheet Extrusion Line – Bottle to Sheet / Tray

Direct rPET Processing \rightarrow **Sheet** \rightarrow **Tray**

Conventional Single Screw Extruder vs. MRS Extruder

From rPET to a Food Grade Tray MRS Extrusion Process Steps

MRS Extruder Design of the MRS Technology

- + Single screw technology with a special, multiple screw section
- + No pre-treatment of the material prior to extrusion
- + Efficient distributive mixing
- + Specifically developed for polyester and recycling applications
- + Efficient devolatilization and decontamination

MRS Extrusion System

MRS Extruder Performance and advantages

- + Single screw technology with special, multiple screw section
- No pre-treatment of the material prior to extrusion: no crystallization or pre-drying of hygroscopic polymers
- + Efficient distributive mixing
- + Specificlly developed for polyester and recycling applications
- + Efficient devolatilization and decontamination
- + Reduction of energy and space requirement
- + Low thermal stress level
- + Short process chain
- + Excellent transparency, brilliance of final product, extremely low "yellow-value".

MRS Extruder Food approvals

Large number of approvals for processing up to 100 % post-consumer and industrial polymer waste to food contact products.

Fitration in Recycling Applications Rotary Filtration Systems RSF*genius*

RSF*genius* Features

- + Process and pressure constant
- + Integrated backflushing system
- + Encapsulated design
- + Pinion drive
- + Fully automatic
- + Screens in kidney or trapezoidal form

RSF*genius* **Filtration** Fully-automatic, pressure- and process constant

Filtration System RSFgenius

1111038 4

Typical Purging Losses Rotary Filter RSF*genius* vs. conventional purging filter

Online Viscometer VIS Monitoring of rheological parameters

Dr. Carl-Jürgen Wefelmeier Viscometer

- 1 Bypass
- 2 Main melt flow
- 3 Gear pump
- 4 Measuring capillary
- 5 Temperature sensor
- 6 Pressure transducers

MRS Extrusion MRS*jump*

- How to improve the MRS process and melt properties significantly?
- To increase the melt i.V. a process needs to provide:
 - LOW vacuum

x+x x+x x+x

 ζ

- LONG residence time
- HIGH melt surface exchange
- Further development of MRS section

$$\frac{\Delta n}{\Delta t} = -D \cdot F \frac{dc}{dx}$$

1 mbara

Dr. Carl-Jürgen Wefelmeier MRSjump

gncuß

MRS*jump* IV stabilization on at least the same level

Dr. Carl-Jürgen Wefelmeier MRSjump

Tray-to-Tray Recycling IV increase / stabilization on same level

Dr. Carl-Jürgen Wefelmeier MRSjump

Use of Post Consumer PET in Bottle und Fibre Production

Dr. Axel Hannemann Post Consumer PET in Bottle und Fibre Production

Content

Technologies:
 + Jump Polycondensation

2. Recycling Solutions

- + Fiber Recycling
- + Textile Recycling
- + Bottle to Bottle Recycling

Polyreactor Jump IV boost to another level

1 mbara

Dr. Axel Hannemann Post Consumer PET in Bottle und Fibre Production

Polyreactor JUMP Precise viscosity boost

- + Very fast IV increase in the **melt phase**
- + Minimum energy consumption
- + Minimum space requirement
- + Easy to operate and maintain
- + Can be used in pellet processing or direct recycling (e.g. fibre or strapping tape production)

MRS, MRS*jump* and Jump Performance

Dr. Axel Hannemann

Post Consumer PET in Bottle und Fibre Production

gncuß

Fibre Production With Bottle Flakes

- + Bottle to Staple Fibre
- + Bottle to Nonwovens
- + Bottle to BCF (carpet yarn)
- + Bottle to POY, DTY

Well proven process, state of the art with MRS system, IV loss is accepted

Bottle Flake IV ~ 0,78 dl/g Fibre IV ~ 0,62 - 0,7 dl/g

Dr. Axel Hannemann Post Consumer PET in Bottle und Fibre Production

BUT

Bottle flakes are becoming rare and expensive

Need to use bottles in bottle production again Europe: 25 % till 2025 and 30 % till 2030

So there will be a more and more closed loop in the B2B processes, most will be returned to big bottlers like Coke, Pepsi, Danone, ...

Leftovers are poor quality and expensive

As a consequence, other sources are needed

Fibre Waste: Headache or Goldmine?

Fibre waste (industrial waste):

- is typically 1 % of production
- occurs in different forms in different parts of the fibre spinning process
- can have different IV depending on type of fiber manufactured
- spin finish oils and water make recycling difficult

Fibre waste has a very low commercial value!

But:

can it be used to replace virgin material?

Dr. Axel Hannemann Post Consumer PET in Bottle und Fibre Production

gncuß

Solutions for Fibre Recycling I

Glycolysis for existing polycondensation spinning

Solutions for Fibre Recycling I Direct Recycling Fibre to Fibre

Polycondensation: Mixture of main material flow with recycled content

Agglomerated fibre waste

(including spin finish oils)

Size reduced start up lumps

•

Wide IV range: from 0,55 - 0,8 dl/g

ancuf

Solutions for Fibre Recycling I

Solutions for Fibre Recycling II For existing (extrusion) spinning

Waste to Pellets (high IV)

Pellets for high viscosity applications

Pelletizing Applications Example 1

Jump V2000 Reactor downstream of MRS 130 1.000 kg/h (800 kg/h) fines from bottle shredding

IV in ~ 0,64 dl/g IV extruder 0,58 dl/g IV out ~ 0,64 dl/g

Dr. Axel Hannemann

Post Consumer PET in Bottle und Fibre Production

gncuß

Textile Waste: Headache or Goldmine?

Fibre waste (Post consumer waste):

- Production and use is far away
- Lots of different fibers are mixed (cotton)
- Buttons and zippers
- Design and ingredients needed to be changed (uniforms out of 100 % PET)
- Chemical recycling can do this, but really expensive and not industrially proven so far

Pellets Applications Bottle to bottle

Requirements:

- IV ~ 0,8 dl/g
- Low AA (Acetaldehyde) content ~ 1ppm
- Low b* value (color)

Topics:

- Temperatures above melting point will create AA additional process step (diffusion below T_m)
- Additive or short storage under heat

Solutions:

- MRS + SSP in normal applications
- MRS*jump* + "de-aldehyd" for **clean** bottle flakes

MRS Extruder Food approvals

Bottle Flake

(IV~ 0,8)

100 % bottle flake (food container) use

1 mbar

MRSjump Section

RSF*genius* filtration ~ 40 µm

Dr. Axel Hannemann Post Consumer PET in Bottle und Fibre Production

Dr.-Ing. Carl Jürgen Wefelmeier

Head of Business Unit Sheet Gneuss Kunststofftechnik GmbH

Phone: +49 5731 5307 63 Carl-Juergen.Wefelmeier@gneuss.de

Dr.-Ing. Axel Hannemann

Head of Business Unit Fiber & Pellets Gneuss Kunststofftechnik GmbH

> Phone: +49 5731 5307 43 Axel.Hannemann@gneuss.de

> > www.gneuss.com

